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THRUSTING TRAJECTORY MINIMIZATION PROGRAM 


FOR ORBITAL TRANSFER MANE W E R S  


By Lawrence H. Hoffman, Richard N. Green, 

and George R. Young 


Langley Research Center 


SUMMARY 


A computer program has been designed which determines the minimum -burn-time, 
thrusting, transfer trajectory between two Keplerian orbits. The minimization equations 
are formulated with constant Lagrange multipliers and solved numerically with the 
Newton-Raphson method. The solution obtained in this paper is not truly optimum 
because the control vector has been restricted to constant values (i.e., to be optimum the 
control vector should be a function of time). 

The equations of motion for the transfer trajectory a r e  those of a spacecraft maneu­
vering with constant thrust and mass-flow rate in the neighborhood of a single body. The 
thrust vector is allowed to rotate in a plane with a constant pitch rate.  The transfer 
trajectory is characterized by six control parameters and the final orbit is determined or 
partially determined by the desired target parameters. The program is capable of 
varying from one to six control parameters to find the desired target parameters which 
a r e  chosen from a large set. If the number of target parameters is less  than the number 
of control parameters, the fuel required for the maneuver is minimized. To conserve 
computer time the equations of motion a r e  integrated by a truncated power ser ies  in time. 
The use of the program is illustrated with three sample computer cases.  

INTRODUCTION 

In order  to study completely an interplanetary, orbital mission i t  is necessary to 
define the maneuver targeting logics that a r e  required at each of the guidance junctures. 
In the case of the Viking mission it is felt that adequate interplanetary targeting studies 
can be accomplished with the Mark IV E r r o r  Propagation Program (ref. 1) or  the 
Simulated Trajectories E r r o r  Analysis Program (ref. 2). Both of these programs include 
targeting options to  determine the midcourse velocity corrections such that the trajectory 
constraints a r e  satisfied at the planet. In addition, each program can be used to perform 
an e r ro r  analysis of the interplanetary phase of the mission. However, since neither 
program has a finite burn maneuver capability, they will  not solve the targeting problem 
for the M a r s  orbit insertion maneuver, the orbit t r im maneuvers, or the deorbit maneu­
vers .  Various programs exist for the near planet targeting analysis required for this 



mission (e.g., refs. 3, 4,and 5); however, f o r  various reasons the existing programs were 
unsuitable for  this analysis. References 3, 4, and 5 are all for a coplaner transfer which 
is not general enough for the Viking mission. Many other existing programs are impul­
sive and therefore one cannot estimate fuel requirements accurately with them. For 
these reasons a computer program VITAP (Viking Targeting Analysis Program) was 
developed which solves the near  Mars  phase of the targeting analysis. 

One of the areas of investigation in Project Viking is that of determining the 
minimum -fuel, thrusting, t ransfer  trajectory between two Keplerian orbits. This pro­
blem exists for  the Mars  orbit insertion maneuver, the orbital t r ims,  and for the deorbit 
maneuver. The equations of motion for  the transfer trajectory are those of a spacecraft 
maneuvering with constant magnitude thrust and mass  -flow rate in the neighborhood of a 
single body. To increase the flexibility of the program the thrust  vector is allowed to 
pitch at a constant rate; however, for Project Viking, the pitch ra te  is zero. Therefore, 
the problem considered here  is as follows: Given an  initial Keplerian orbit and the 
characteristics of the engine, determine a set of control parameters  which define the 
thrusting maneuver such that the required fuel is minimized and the resulting orbit 
satisfies a number of constraints. 

A description of the mathematics used in VITAP is presented. It consists of solving 
a finite-dimensional minimization problem with equality constraints. The minimization 
equations a r e  formulated with constant Lagrange multipliers and solved numerically with 
the Newton-Raphson method. Since these equations a r e  very complicated, the first and 
second partial derivatives necessary for  the solution are computed numerically. A dis­
cussion of this procedure is also included. A detailed description of the assumed model 
of the thrusting spacecraft is given together with the associated equations of motion. To 
conserve machine time these equations are integrated by a truncated power series in 
time. The power ser ies  solution to the equations of motion is completely developed in 
the appendix. A description of the computer program is given with a discussion of the 
program input and output. The use of program VITAP is illustrated with three sample 
computer cases.  

SYMBOLS 


A submatrix defined in equation (8) 


a semimajor  axis, kilometers 


a *  specific value of a, kilometers 


a(t) magnitude of thrust acceleration at  t ime t, kilometers/second2 


2 

I 
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-L 
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B-R 

B-T 
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(Z) 

G 

g 

i 

i* 

K 

m 

N 

R 


R 

r 

ra 

submatrix defined in  equation (8) 

vector from center of planet to incoming hyperbolic asymptote, kilometers 


component of 3 in fi direction, kilometers (see sketch 3) 


component of 5 in 9 direction, kilometers (see sketch 3) 


eccentricity 


augmented function (see eq. (1)) 


function of Z 


lighting angle at landing point, degrees (see sketch 2) 


partial derivatives of F with respect to (see eq. (4)) 

inclination, degrees 

specific value of i, degrees 

step size control variable (see eqs. (11)) 

mass,  kilograms 

number of trajectory integration increments 

e r r o r  variable (see eq. (12)) 

unit vector perpendicular to planet equator (see sketch 3) 

radius from center of planet, kilometers 

radius of apoapsis, kilometers 

radius of periapsis, kilometers 

unit vector parallel to incoming hyperbolic asymptote (see sketch 3) 
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A 

T unit vector in planet equator perpendicular to (see sketch 3) 

t time, seconds 

tb t ime duration of thrusting maneuver, seconds 

vca hyperbolic excess velocity, kilometers/second 

4 

x, six-dimensional state of spacecraft at end of maneuver 

X,Y ,Z rectangular Cartesian coordinates, kilometers 

Q,P,G angles defining direction of thrust, degrees (see sketch 1) 

e
CY vector of control variables 

-L -c 

@1 first guess fo r  CY 


AV integral of acceleration due to thrust, kilometers/second (see eq. (18)) 


- 4 -

ACY5 CY - CY^ 


A&ACY; components of vector AZ" 


AZG" maximum allowable step size of Zi! 


s'k infinitesimal variation of Z 

E convergence cr i ter ia  (see eq. (12)) 

0 angle between landing point and periapsis, degrees (see sketch 2) 

e thrusting pitch rate, degrees/second (see sketch 1) 

e
h vector of constant Lagrange multipliers 

-c 

h l  first guess for  T 
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lJ gravitational constant of planet, kilometers3/second2 

V t rue  anomaly, degrees 

(P latitude of landing point, degrees 

IC/ trajectory constraints 

si longitude of ascending node, degrees 

0 argument of periapsis, degrees 

Subscripts : 

f 

i7U 

m 

mXm 

min 

n 

1,2,. .. 

final value 

indices 

number of constraints 

matrix with m rows and m columns 

minimum 

number of control parameters 

initial conditions 

first, second, ... 

Superscripts : 

T matrix transpose 

-1 matrix inverse 

? modified parameter 

Dot over a symbol indicates differentiation with respect to  time. 
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ANALYSIS 

Finite -Dimensional Minimization Problem with Equality Constraints 

Consider the finite -dimensional minimization problem in which equality constraints 
have been imposed. It is desired to  find a set  of controls (a1 , cy2 , .  . .,cyn) such that the 
function f (cyl ,cy2, .  . .,cyn) is minimized subject to the m constraint conditions 

where m 5 n. If f and Qi a r e  sufficiently smooth and qi linearly independent, the 
solution must satisfy the conditions 

aF -
aZ 

where F is defined as 
1=m 
P 

.-
and X E Fi ,A2, .  . .,Am] is an m-dimensional Lagrange multiplier vector. Therefore, 
necessary conditions for to minimize fF) a r e  

-c 

+ = o  
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and 

In addition, a sufficient condition for a local minimum (refs. 6 and 7) is given by 

where 

6a = (Y - amin 

and is constrained to satisfy 

Newton-Raphson Technique 

The necessary conditions for a minimum (eqs. (2)and (3))can be solved by the 
Newton-Raphson technique. Let 

Then the necessary conditions can be written as 

gi(z,T) = 0 (i = 1,2,...,n) (5) 

(2 = 1,2,. . .,m) (6) 
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Expanding equations (5) and (6) in a truncated Taylor series about the point zl,zl-c 

(where zl denotes the first guess at the control vector and hl denotes the first guess 
at the Lagrange multipliers) yields 

(2 = 1,2,...,m) 

Since 

then the necessary conditions can be expressed as 

i 


-ia% 
act, i 

. I  

where A Z  5 - Z1 and A'ii -xl a r e  the corrections to improve the initial guess, 

The familiar Newton-Raphson iteration equations can now be written as 
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Inspection of equation (7)reveals that it can be written as 

- -
I -1 

I 


A BT 
I 


B I [OI 
I 

I 

I 


For the case where m = n, it is instructive to consider the inverse of the matrix in 
equation (8) using Schur's method for partitioned matrices (ref. 8), that is, 

I 


1 (9) 

I 

I 


-1 
If m = n  and all the proper inverses exist, the expression A-l  - A- 1 T(BA-lBT) BA'lB 
reduces t o  the null matrix [q and the corrections to the control parameters depend only 
on the e r r o r s  in the constraints and not on the Lagrange multipliers associated with 
gAz,T). This is to be expected when n controls a r e  varied t o  satisfy n constraints 
and no minimization takes place. In addition, when m = n the expression 

A-'BT(BA-'BT)-' reduces to B- l  such that 
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which a r e  the Newton-Raphson iteration equations for solving n equations in 
n unknowns. 

Experience has shown that the range of convergence for  the Newton-Raphson tech­
nique can be considerably extended by placing constraints on the allowable size of the step 
to be taken. If the step s ize  of the controls is constrained t o  be less  than AZ*, then a 
modified step s ize  is given by 

where 

Such a procedure will greatly increase the range of convergence for  equation (9). 

The Newton-Raphson technique is considered complete when the e r r o r s  in the con­
straints and the first partial derivatives of the augmented function a r e  small, that is, when 
the control vector converges and ceases to  change. Symbolically, the solution is complete 
when 

R < E  (12) 

where 

I I  gn q1 + . . . + I $ "R =  gl + . . . +  I I  + I I  
and E is a small number. 

Numerical Differencing Formulas 

The Newton-Raphson iteration technique used to solve the finite-dimensional mini­
mization problem requires expressions for  a number of partial derivatives. From equa­

a+2 agition (7) it can be seen that the partial derivatives - and - a r e  needed whereaCYj aCYj 

Assuming that ~ ( c Y ~ , c Y ~ , .. .,an) can be differentiated directly, it remains to obtain the 
first and second derivatives of the constraint functions +I  with respect to the con­
trols  CY. In general + z ( ~ 1 , ~ 2 7 . .

J '  
.,an)is an implicit function of CY and does not lend 
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itself to  direct differentiation. However, it was  found that numerical partial derivatives 
a r e  quite adequate for  the Newton-Raphson iteration equations. Letting A a i  denote a 
small  increment in ai, the first partial derivatives can be represented by (ref. 9, p. 136) 

where Z = 1,2,...,m and j = 1,2,.. .,n. Similarly, the second partial derivatives can be 
represented by 

a2*z 
aai a a j  

-
4Aai

1
A a j  

kz(a1,. .. , a i+AaiY.  .. , a -+Aaj , .  ..,an)J 

where Z = 1,2,. ..,m and i , j  = 1,2,. . .,n. When j is replaced by i, equation (14) 
reduces to 

which reduces the number of t imes that *l is evaluated. It can be 

must be evaluated 2mn times to  obtain the first partial derivatives and 

t imes to obtain the second partial derivatives. 

APPLICATIONS 

Equations of Motion 

The engine used to perform these maneuvers is assumed to have a constant thrust  
and a constant mass-flow rate m. If the mass of the spacecraft at the start of the 
maneuver is mo, then the mass at time t is given by 

m(t) = mO + int (15) 
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and the magnitude of the acceleration by 

Thrusta(t) = 
mo + lint 

The direction of the acceleration vector is defined by sketch 1, where the X,Y,Z triad is 
the inertial Cartesian coordinate system alined such that the Z-axis is perpendicular to  
the Mars equator and the X-axis is at  the Mars vernal equinox. This system of coordi­
nates is normally referred to as the areocentric system. From sketch 1, it can be seen 

z 

X J 

Sketch 1 

that the locus of the thrust vector is in the plane defined by the angles .cy and p. At the 
start of the maneuver (t = 0) the thrust-vector direction is defined by the angle 6 and 
thereafter is allowed to rotate in the 01,p plane at  a constant rate 4 until the maneuver 
is terminated at  t = tb. During the maneuver the thrust vector is defined by the angle 
6 d t  and the direction cosines a r e  

cos @+it)cos  01 - sin (6+8t) sin 01 cos P 

cos (6+it) sin 01 + sin. (6+it) cos (Y cos p 

sin (6+it) s in  p 

The assumed trajectory model is two body motion plus an acceleration due to thrust and 
is defined by the equations of motion 

12  
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where 

Thrusta(t) = mo + rint 

r =(x2 + y2 + 22) 1 /2  

and p is the gravitational constant. The initial conditions for  the equations of motion 
are derived from the knowledge of the initial orbit plus a control variable vo which 
denotes the t rue anomaly on the orbit at the start of the maneuver. In other words, the 
initial orbit is known, but the "best" position along this trajectory to perform the maneu­
ver  is unknown. Therefore, the best position vo must be determined during the optimi­
zation process. In fact there a r e  six parameters that characterize the maneuver and 
must be determined, namely, 0,(3,6,8,tb,Vo. The initial direction of thrust is defined 
by cy,(3,6; the pitch rate, by 4; the time duration of the burn by tb; and the position 
of ignition, by vo. These six parameters constitute the se t  of control parameters 
(a1,a2,.. .,cyn) for  the finite-dimensional minimization problem. The function of these 
parameters to be minimized is simply 

Since the mass-flow rate is constant, minimizing the square of the burn time is equivalent 
to minimizing the required fuel. The function to be minimized is not restricted to tb 

2 

and there a r e  other continuously differentiable functions of the controls that could have 
been used. Once the six controls a r e  determined they along with the initial orbit com­
pletely define the final orbit. 

Trajectory Constraints 

The controls a r e  to be determined such that the burn t ime is minimized subject to  
the requirement that the final orbit has certain characteristics. Therefore, the control 
parameters are required to satisfy certain constraints, that is 
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where m S 6. Since the maneuver is defined by six control parameters,  in general no 
more  than six constraint functions can be satisfied. For the burn t ime to be minimized, 
the number of constraints must be less than the number of control parameters.  As an 
example it might be required that the final orbit have a semimajor axis a equal to a 
constant a* and an inclination i equal to i*. The constraint functions would then be 

=a(%) - a* = o 

where a and i are functions of the state s;f at the end of the burn and Zf is a 
function of the controls through the equations of motion (eqs. (16)). Since the values of 
a and i a r e  fixed in the final orbit, they are referred to  as target parameters. The 
minimization process targets to the specified values of these parameters while minimizing 
the burn time. 

There are any number of target parameters from which to  choose. An obvious set 
is the six Keplerian orbital elements a, e, i, w ,  52, and v. Others would include the 
radius of periapsis rP and the radius of apoapsis ra. The period of the final orbit is 
a likely candidate. It might be required to  establish the final orbit in such a manner that 
the spacecraft would be at a given position at some future time. Therefore, the latitude, 
longitude, and t rue anomaly of the spacecraft at a reference t ime should be included in 
this list of target parameters. 

Consider the requirement that the landing point on the surface be located a t  a pre­
scribed lighting condition o r  at a given latitude. The geometry of this situation is shown 
in sketch 2. 
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Z Constant G 

Sketch 2 

The landing point is arbitrari ly defined to be at an angular distance 0 from periapsis 
and within the plane of the final orbit. Since 0 is assumed constant, the landing point is 
a function of only the orientation angles i,w,n of the final orbit. Therefore, the 
thrusting maneuver could be constrained to an orientation that places the landing point at 
a prescribed latitude @. Similarly, the lighting angle G at the landing point could 
serve as a target parameter. 

Other useful target parameters a r e  the hyperbolic impact plane param­
- A  -.. A 

eters  B-T, B-R, V,, S. These parameters a r e  defined in sketch 3 and reference 10. 
I A A 

The three unit vectors S,T,R form a coordinate system where is parallel to the 
incoming asymptote of the spacecraft orbit, ?' lies in the Mars equatorial plane perpen­
dicular to g, and completes the triad. The miss  vector is in the fi-? plane 
and represents the distance from the center of Mars to the incoming asymptote. It is 
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Sketch 3 
- a .  


usually characterized by its two components B-T and Z-R. This set  of parameters
- *  - c -

B-T, B-R, and the hyperbolic excess velocity V, completely specify the final 
hyperbolic orbit. They a r e  frequently more useful than the standard orbital elements 
and, therefore, should be included in the list of target parameters. 

The choice of specific target parameters determines the constraint equations which 
enter the optimization process. As stated previously, no more than six constraints and at 
least  one constraint must be imposed. The choice of the individual target parameters is 
important in that the ones mentioned are not a l l  independent. As an example, suppose 
that the three target parameters a,e,rp were chosen. Since a and e dictate the 
radius of periapsis of the final orbit, i t  would be impossible to satisfy these three con­
straints unless the third constraint happened to be consistent with that dictated by the first  
two. In general these three target parameters a r e  dependent and would not constitute an 
acceptable se t  of constraints. Therefore, the specific target parameters should be chosen 
with care. 
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The areas in Project Viking which require optimum orbital transfer can now be 
analyzed. Given the orbital elements of the original orbit and an initial guess on the 
Controls a,P,b,i,tb,v, and the multipliers Xi, the necessary equations for  a minimum 
maneuver (eqs. (2) and (3)) subject to the desired constraints can be solved by the 
Newton-Raphson iteration technique (eq. (7)). 

COMPUTER PROGRAM VITAP 

Program Description 

The equations for  an optimum, thrusting transfer between two Keplerian orbits and 
their associated Newton-Raphson solution have been incorporated into a computer pro­
gram, VITAP. It consists of a main program and 11 subroutines which a r e  written 
entirely in FORTRAN computer language for the Control Data 6600 computer system. 
The program resulted in a field length of 50 0008. 

Various options have been included in VITAP which allow for  a considerable amount 
of flexibility. The option is available to vary the six control parameters (Y,P,b,d,tb,vO 
o r  to fix one o r  more of the controls at a constant value. 

e is fixed at a constant value, the transfer maneuver is optimized with respect to the 


For example, i f  the pitch rate 

remaining five control parameters.  This option allows various guidance laws to be 
considered. In addition a number of different target parameters a r e  available as con­
straints on the optimum maneuver. In fact, as many as six constraints out of a set of 
twenty can be selected. Thus, quite a large number of combinations of control variables 
and target parameters a r e  available. Program VITAP also operates in three modes. 
The first mode is the normal optimum transfer outlined previously. The second mode 
allows for the optimum transfer  with the additional constraint that the inclination of the 
final orbit be between an upper and lower bound. The third mode targets backwards. 
This mode considers the problem of finding the best orbit from which to establish a given 
orbit. Here the final orbit is completely known and the initial orbit is unknown, thus, the 
term "backward" targeting. 

The computer time required to  find the optimum transfer is important from a 
practical consideration. It is easy to imagine the large number of computations which 
are performed since the solution is iterative and contains the first and second numerical 
partials of the target parameters with respect to the controls. These numerical partials 
require that the equations of motion (eqs. (16)) be integrated repeatedly. If all six of the 
controls a r e  free,  then 1 2  trajectories a r e  required to compute the first partials and 
61 trajectories for the second partials. Thus, the equations of motion must be integrated 
73 times for a single iteration. In general the required number of trajectories is 
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2n + where n is the number of f ree  control parameters. The number of 

iterations necessary to converge the initial guess to  the optimum control vector varies 
considerably depending on how good the initial guess is and the sensitivity of the solution. 
However, when the convergence is slow, a large number of trajectories must be inte­
grated. Although many other calculations are performed, the majority of the machine 
time is spent integrating these trajectories. For  this reason the equations of motion 
were expanded in a power ser ies  in time and a r e  integrated in  this manner. (See the 
appendix.) This approach is much faster  than the more standard numerical methods of 
integration. To further decrease the machine time, the trajectories are divided into N 
increments each of which is integrated with a 13-term power ser ies .  Thus, the duration 
of each segment is tb/N where N = 1,2,. . . , lo.  As a result of integrating by power 
ser ies ,  the computer program is not limited by machine time. 

Program Input 

All input to program VITAP is accomplished by means of a FORTRAN namelist 
DAT. Each of the name list variables is defined in table I. 

The combination of f ree  control variables and desired target parameters is con­
trolled by an a r r ay  of 12 integers. NOPT(1) to NOPT(6) correspond to cy, p,  6, 0,  
tb, and vo. If a 1is input in NOPT(K), then the Kth control is f ree  to vary. A 0 denotes 
that the Kth control is fixed and not allowed to vary from the initial guess which is input 
by the GS array.  For  example, consider the case where the thrust vector is not allowed 
to pitch but remains in a constant inertial direction throughout the burn. Obviously, the 
three angles cy,p,G (sketch 1)overdefine the problem since only two angles a r e  needed 
to define the inertial direction. To overcome this problem the angle /3 could be held 
constant at 90° allowing CY and 6 to function as the right ascension and declination 
of the thrust vector, respectively. Thus, a constant inertial maneuver requires that 
4 = 0 and p = 90' throughout the maneuver. The appropriate input for  the f i rs t  six 
integers of NOPT would be NOPT = 1, 0, 1, 0, 1, 1, and GS = (111,go., 61, O., tb

1' vol 
where the subscript denotes the f i r s t  guess at the controls. Mathematically, the number 
of control variables is reduced from six to four so that the n of equation (7) is equal 
to four. This is the equivalent of omitting two rows and two columns of the general 
Newton-Raphson matrix of partial derivatives. An interesting point is the number of 
trajectory integrations needed for each iteration. Since oniy 33 trajectories a r e  needed 
to calculate the partial derivatives instead of the usual 73, this case should use less  than 
half the machine time needed for the general case. The constraints imposed on the 
optimum solution are defined by NOPT(7) to NOPT(12). At most VITAP will consider 
six constraints which would correspond to 1for NOPT(7) to NOPT(12). However, i f  
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NOPT(6 + K) = 0, then the Kth constraint is not invoked. In other words NOPT turns the 
constraints off and on by an input of 0 or  1, respectively. In this manner from one to  n 
constraints are considered where n is the number of free controls. In this example 
where p and 6 were fixed the number of constraints must be four or less. The 
specific target parameters are denoted by KOPT, an a r r ay  of s ix  integers each of which 
have a value from 1to 5. Table 11defines the various options. The values of the target 
parameters chosen are then fixed at the values in a r r ay  AIN. Therefore, the constraint 
is turned on by NOPT, the target parameter is defined by KOPT, and its value is input 
by AIN. For example, suppose 

NOPT = 1, 0, 1, 0, 1, 1, 1, 0,1, 0,0, 0 

KOPT = 1, 2, 1, 1, 1, 1 

AIN = 20488., O., lo., O., O., 0. 

From NOPTit  can be seen that o,s,tb,vo are the f ree  controls while p and 6 
are fixed. In addition two constraints are considered. KOPT shows that the two target 
parameters are a and i while AIN states that a* = 20488 km and i* = 10'. The 
zeros  in AIN have no function since these constraints are turned off by NOPT. However, 
the corresponding input in KOPT is meaningful since the values of the six target para­
meters  chosen from table I1 are printed as output. Note that one of the target parameters 
in table I1 is l/a. This parameter is equivalent to a and provides a smooth transition 
between hyperbolic and elliptical orbits. 

The remaining input parameters  of table I need little explanation. The five initial 
orbital elements are defined by the CONI array.  The sixth element, t rue anomaly, is not 
input since it is a control variable. The G L  ar ray  is similar t o  GS and contains the ini­
tial guesses on the Lagrange multipliers. As mentioned previously, the rate  of conver­
gence is highly dependent on the initial guesses at the controls. However, the guesses at 
the multipliers seem to have little effect on the convergence. If GL is not input, VITAP 
fills the a r ray  with 1's which are acceptable initial values for  the Lagrange multipliers. 
The small increments in the control parameters A a i  used to generate the numerical 
partial derivatives (eqs. (13) and (14)) are defined by the H P  array.  The* maximum allow­
able step size for  the controls during the Newton-Raphson iteration A a i  a r e  defined by 
the V1 array.  The step size is then computed according to equation (11). Values for  both 
H P  and V 1  a r e  built into the program and seldom need changing. However, these values 
may be altered at any time by the appropriate input. The number of segments used to  
integrate the equations of motion by power series is input through NSTEPS. If the total 
burn time tb is 1800 seconds and NSTEPS is 6,  then VITAP integrates in 300-seconds 
segments with a 13-term power ser ies ,  the initial conditions for  the second segment being 
the end conditions of the first segment. A reasonable input value for NSTEPS is one 
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which results in about 300- to 400-second segmehts. The accuracy of the trajectory, 
however, can be improved by increasing NSTEPS at the expense of machine time. The 
three parameters describing the spacecraft are mass,  mass-flow rate, and thrust which 
are input according to table I. The gravitational constant of Mars 1-1 is stored in VITAP 
as UMARS = 42828.4 km3/sec2 but can easily be changed by input. Some of the target 
parameters of table 11require additional input other than just the value input through the 
AIN array.  Fo r  example, all the target parameters related to a reference date require 
two Julian dates, the time at which the spacecraft would reach periapsis on the initial 
conic and the time at which the target parameter is to  have the given value. These two 
time parameters a r e  PERJD and REFJD, respectively, and need be input only if the time-
related target parameters a r e  exercised. To constrain the latitude of the landing point, 
the angle 8 must be input through PER. In addition, if the lighting angle G is one of 
the objects of the targeting, then the right ascension and declination of the subsolar point, 
SLONG and SLAT, must also be input. Once all the input is defined, the program VITAP 
uses the initial guesses at the controls and multipliers to start the Newton-Raphson itera­
tion technique which continues until one of two situations occurs. If the sum of the e r r o r s  
(eq. (12)) is l e s s  than the value of E which is input through ERR, then the process is 
assumed to have converged at the optimal set  of controls and the solution is completed. 
On the other hand, if the number of iterations exceeds the input value of MAXIT, the pro­
cess  is considered nonconvergent and is stopped. 

Finally, the mode of operation must be defined as 1, 2, or 3 by the input parameter 
MODE. The normal targeting mode (MODE = 1)is straight forward. The initial orbit is 
specified by ao,eo,io,wo,S20 along with the desired target parameters. The program 
VITAP finds a control vector 8 which maneuvers the spacecraft from the initial orbit 
to the final orbit which satisfies the target parameters. If there is a t  least one more 
f r e e  control than target parameters, VITAP minimizes the burn time - or equivalently 
the required fuel - by the Newton-Raphson technique (eq. (7)). If the numberof target 
parameters is equal to the number of f ree  controls, the solution is a straight forward 
search without minimization (eq. (10)). To target the inclination within bounds, the second 
mode (MODE = 2) is used. This search is similar to  mode 1with the restrictions that the 
inclination of the final orbit must not be specified as a target variable and the number of 
f r ee  controls must be greater than the number of target parameters. If the inclination 
constraint option NOPT(9) is not equal to 0, it will be set  equal to 0. First the program 
finds the optimum controls which will result in some inclination if. This inclination is 
then compared to the two boundaries specified by the input parameters BOUND(1) and 
BOUND(2). If the inclination is between these bounds, the solution is complete; if it is 
outside this interval, the program retargets to the closest bound. With the addition of 
another target parameter i, the second solution may no longer be a minimization. 
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The third option (MODE = 3) is more involved than the other two. It has been 
termed backward targeting and finds the best orbit from which to establish a given orbit. 
The only change in input involves the CONI array.  Instead of CONI containing the initial 
orbit, for mode 3 it contains the final orbit while the initial orbit is partially defined by 
the target parameter options of table II. Thus, the final orbit is completely defined 
except for the true anomaly and the initial orbit is only partially defined by the target 
parameter constraints. The targeting problem, then, is to find the remaining initial 
orbital elements such that a transfer from this orbit to  the given orbit is optimum. It is 
solved with the same mathematics as mode 1 with some changes in procedure. The pro­
gram internally changes the input and considers the motion from the final orbit to  the 
initial orbit. When the motion is reversed the final orbital elements become a,, eo, 
180°-i0, CA0+1800, and 180O-w, which is due to the interchange of the ascending and 
descending nodes. The initial mass of the spacecraft on the initial orbit is known from 
input, but the mass  on the final orbit is not known since the optimum burn time has not 
been established. It is obvious that the spacecraft will lose mass  during the transfer from 
the initial to the final orbit. Equation (15)can be used to predict the mass in the final 
orbit as mf = mo + mtb, where mo is the initial mass  and tb is a guess a t  the burn 
time. The initial guesses at  the controls a r e  changed internally to (Y, p, 6+6tb, 4, tb, -vo 
due to the reversal  in motion. The program then uses the corrected orbital elements 
and controls to integrate the equations of motion which results in some initial orbit 
which neither satisfies the constraints nor is optimum. The guesses at  the controls 
a r e  then corrected according to the Newton-Raphson matrix, and the iteration procedure 
continued until the solution is obtained. The only difference between this procedure and 
the normal procedure is that the mass  mf in the final orbit is corrected for each i tera­
tion according to the change in burn time tb. Therefore, the solution is complete when 
both the controls and mass  have converged. For this reason the backward targeting con­
verges much slower than the normal targeting. 

Program Output 

The computer outputs for  each of the three modes of operation a r e  presented in 
tables 111, W ,and V. 

The normal targeting mode (MODE = 1) is presented in table III. The first output is 
a complete listing of all of the parameters input through the namelist DAT. These param­
eters  have been previously defined in the section entitled "Program Input" and in table I. 
Next is a formal listing of the mode of operation, the initial orbital elements, and a 
description of the f ree  control parameters and the selected target parameters. It can be 
seen that the initial conic is a hyperbola and that the initial guess at the t rue anomaly is 
-6OO. The program will find a subset of four controls ((Yy6,tb,v0) such that the final 
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orbit has a prescribed value of a (or l/a), i, and 0. Since there  are more control 
variables than target parameters,  the program will find the controls which minimize 
tb2. When four controls are varied to find three parameters in the final orbit, the opera­
tion is said to  be a 4 by 3 search. 

The search or iteration is recorded by a selected set of output parameters.  The 
first, second, and last iterations are shown in table III. The control parameters for  the 
f i r s t  iteration which are the initial guesses are shown followed by the initial guesses at 
the Lagrange multipliers. Next, is presented the orbit which resulted from applying the 
initial controls to the initial orbit. The corresponding target parameters are then output 
which a r e  naturally in e r r o r  since the initial guess at the control variables was not the 
optimum set. The sensed velocity corresponding to  tb is output followed by the e r r o r  
in the target parameters.  The sensed velocity is the integral of the acceleration due to  
thrust, that is 

Jotb Thrust dt  = 
A v =  m 0 + m t  m 

and the e r r o r s  in the target parameters are the differences between the desired values 
and the values obtained from the present se t  of controls. Fo r  example, from the input 
it can be seen that the inclination of the final orbit is 35'. This is denoted by the third 
entry in the AIN array.  However, the initial controls produced an orbit with an inclina­
tion of 33.328O. Thus, the third target parameter is in e r r o r  by 1.672". Note that three 
of the target parameters e,St,vf have zero e r r o r  because the second, fifth, and sixth 
target options were not exercised as can be seen from the NOPT array. The e r r o r s  in 
the target parameters a r e  then used to improve the initial guess a t  the controls (eq. (7)). 
The corrections to  the initial controls a r e  in the next line of printout. Two points should 
be made about these corrections. First, no correction is added to  p and 8 because 
zeros were input in the NOPT a r ray  in the locations corresponding to  p and 4; thus, 
the program does not allow p and 8 to vary but keeps them fixed at the initial values 
which for this iteration were 90' and 0. deg/sec, respectively. The second point is that 
the corrections to  the controls were limited by the maximum allowable step size in vo. 
According to  the V1 array,  the step in true anomaly for  one iteration cannot be greater 
than 1 5 O .  Since the correction is exactly 1 5 O ,  this implies that the Newton-Raphson 
technique (eq. (7)) calculated a larger  correction and that the corrections were reduced 
according to equation (11). At the end of this block of output is a row labeled 
"Eigenvalues of second partials of augmented function." This row represents the eigen­
values of the upper left-hand portion of the matrix composed of partial derivatives _ _  

agi a2F(eq. (7)). In other words, they are the eigenvalues of the matrix - or  a@, a@:a@,
J 1 J

These values are used as a diagnostic tool. 
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The printout of the second iteration follows the same format as the first iteration. 
The control parameters and the Lagrange multipliers have been updated by the correc­
tions computed in the first iteration and should produce a final orbit that is closer to the 
optimum solution. However, due to the interplay between satisfying both the constraint 
equations and the necessary equations for  a minimum, it is not always apparent that the 
succeeding iterations are closer  than the preceding ones. For the case being considered 
the second iteration does, however, seem to be closer to the solution. The e r r o r s  in two 
of the target parameters i ,w were reduced while the e r r o r  in l/a increased slightly. 
In addition, the sensed velocity was reduced. As before the e r r o r s  in the target param­
e ters  are related to  the corrections in the control variables and the iterative process 
continues. 

The Newton-Raphson technique is repeatedly applied until both the constraint equa­
tions and the necessary equations for a minimum are satisfied (eq. (12)). The 29th 
iteration shows that the process has converged since the e r r o r s  in the target parameters 
are very small  and the computed corrections to the control variables a r e  negligible. The 
optimum set of controls, then, are listed in the first line of printout. They not only pro­
duce a final orbit with the desired target parameters l/a, i, w but also establish i t  with 
a minimum of fuel. Since the eigenvalues of the second partials of augmented function 
are all greater than zero, this is indeed a minimum solution. As a point of interest  the 
Newton-Raphson matrix and its inverse (eq. (7))are output for  the last iteration. The 
matrices presented are the full 12 by 12 matrices. The zero rows and columns corre­
spond to  fixed control parameters and to the constraints that were not exercised. 
Accordingly, these matrices are reduced to  the proper dimensions during the actual 
computations. The final output is the machine t ime in seconds required to compute the 
optimum set of control parameters.  

Table IV presents a sample case of targeting such that the inclination is within 
bounds (MODE = 2). The second mode of operation is s imilar  to  the normal targeting 
mode and allows for  the optimum transfer with the additional constraint that the inclina­
tion of the final orbit be between an upper and lower bound. The procedure is f i r s t  to 
disregard the inclination constraint and solve for  a set  of optimum controls. If these 
controls produce a final orbit that satisfies the inclination inequality, then the solution 
is complete. If this is not the case,  the program then determines which inclination 
bound is closest to the present solution and retargets to that value of inclination. This 
procedure is demonstrated in table IV. The transfer is from a hyperbola to an ellipse 
and is a 6 by 4 search. It is necessary that the number of control parameters exceeds 
the number of constraints since the inclination will be added as a constraint if i t  is not 
within bounds. Also note that inclination is a free variable for  the f i r s t  part of the solu­
tion and that the final orbit is specified by a, e, w ,  and 52. The program proceeds 
to tanget to a, e ,  w ,  and a. After 12 iterations, the optimum controls are found 
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which produce a final orbit with an inclination of 35.28'. From the input it is seen that 
the constraint on the inclination is 31' S if S 35O. Thus, the inclination constraint was 
not satisfied by targeting to a, e,  w,  and 51. The program then proceeds to turn 
on the third constraint option (NOPT(9) = l),define the value of the inclination constraint 
as the closest bound ("(3) = 35.), and set  the initial guesses at the controls and 
Lagrange multipliers equal to the values obtained in the first search. These changes can 
be seen by comparing the first and second listing of the namelist parameters. The pro­
gram then proceeds to solve this 6 by 5 search and after 6 iterations converges to the 
optimum set of control parameters. 

The third mode of operation, backward targeting, is presented in table V. This 
mode (MODE = 3) considers the problem of finding the best orbit from which to establish 
a given final orbit. For the particular case shown the final orbit is an ellipse specified 
by the five orbital elements a, e, i, w ,  and 51. The initial orbit is only partially 
specified by three hyperbolic parameters: the hyperbolic excess velocity, the declination 
of the approach asymptote, and the right ascension of the approach asymptote. These 
three parameters a r e  designated as target parameters. The problem, then, is to deter­
mine the remaining hyperbolic elements and a set of controls so that when these controls 
a r e  applied to the approach hyperbola the resulting orbit will  be the given ellipse. In 
addition the fuel required for  the transfer is to be a minimum. The procedure, as out­
lined previously, is to target backwards from the final ellipse to the initial hyperbola. 
This reversal  of motion is handled internally by the program with one exception. The 
initial guess on the true anomaly at the start of the burn vo is replaced by a guess on 
the t rue anomaly at the end of the burn. That is, the input value of vo is 45' which is a 
guess at the true anomaly in the ellipse where the burn will terminate. 

The printout of the f i rs t  iteration shows the result  of reversing the motion and 
applying the intital controls to the ellipse. As would be expected the hyperbolic excess 
velocity, the declination of the asymptote, and the right ascension of the asymptote a r e  all 
in e r ro r .  These e r r o r s  are used to correct the control variables. One main difference 
between this mode and the others is the problem associated with the mass of the space­
craft .  In order to integrate the equations of motion from the ellipse to the hyperbola, the 
mass of the spacecraft in the ellipse must be known. The mass,  however, is a function of 
the burn time tb required to establish the ellipse, and this time is not known until the 
solution is complete. Thus, an estimate of the mass  in the ellipse is computed as a func­
tion of the present value of the burn time. This estimate is included in the output under 
the heading "FINAL MASS." Therefore, the iteration process must converge the final 
mass  as well as the set  of control variables. This additional requirement slows the 
iteration process considerably. For  the case considered here the program required 
46 iterations to converge the initial controls to the final set of optimum controls. The 
"best" hyperbola for  such a maneuver is given by the third line of printout. 
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CONCLUDING REMARKS 

This report has described a program for determining the minimum-burn-time, 
thrusting, transfer trajectory between two Keplerian orbits. Basically, the method 
described involves the solution of a constrained minimization problem by use of constant 
Lagrange multipliers and the Newton-Raphson iteration technique. The model of the 
transfer trajectory allows for  the thrust vector to rotate in a plane with a constant pitch 
rate. In all, six control parameters characterize the transfer trajectory; thus, as many 
as six constraints can be imposed on the final orbit. If the number of constraints is less  
than six, the program solves for the se t  of controls which minimizes the burn time or 
equivalently the required fuel. The option is available to fix any of the six control vari­
ables and allows various guidance laws to be investigated such as a constant inertial burn. 
This option together with the twenty different constraints from which to choose allows a 
considerable amount of flexibility. In addition the program VITAP operates in three 
modes. The first mode is the normal optimum transfer, the second mode is similar to  
the first with the additional constraint that the inclination of the final orbit be between an 
upper and lower bound, and the third mode targets backwards. This mode considers the 
problem of finding the best hyperbola from which to establish a given ellipse. These 
three modes of operation have been exercised extensively for  representive 1975 Mars 
orbital insertion maneuvers. 

The program uses only necessary conditions for a minimum. Accordingly, there is 
no guarantee that the solution obtained will be a minimum. If, however, the eigenvalues 
of the matrix corresponding to the second partials of the augmented function a r e  all posi­
tive, then the solution is indeed a local minimum. This particular problem of using only 
necessary conditions offers no great  difficulty when there is a judicious choice of trajec­
tory constraints and reasonable initial guesses on the control parameters. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., March 5, 1971. 



APPENDIX 

POWER SERIES EXPANSION OF EQUATIONS OF MOTION 

The most time consuming computation in the Viking Targeting Analysis Program 
is the numerical integration of the equations of motion. Since numerical partial deriva­
tives a r e  used in the Newton-Raphson technique, the equations of motion a r e  integrated 
repeatedly. For this reason the equations of motion a r e  numerically integrated by power 
ser ies  which a r e  considerably fas te r  than the more standard numerical methods. 

The power ser ies  solution of the two body equations of motion have been solved by 
Schanzle (ref. 11). The governing differential equations for two body motion a r e  

where 

and p is the gravitational constant. The trajectory model considered for the Mars  
maneuvers requires the addition of acceleration te rms  which a r e  due to the low thrust 
(nonimpulsive) engine. Therefore, the equations of motion for the finite burn a r e  
(eqs. (16)) 

-+x .. = 
-px a(t>kos  (6+i)t) cos  cy - sin (6+it) sin cy cos  p3
r3 

where a(t) is the magnitude of the acceleration and is given by 

Thrusta(t) = mo + mt 
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APPENDIX - Continued 


The following definitions will simplify the solution of the equations of motion: 


b G 1  
1-3 

Ax(t) = a(t) E o s  (6+&.) cos a - s in  (6+&) sin a cos 4 
+(t) = a ( t ) k o s  (s+et) sin a + sin (6+8t) cos a cos  

A,(t) = a(t) b i n  @+et) s in  a 
Therefore, equations (A3) can be written as 

X = -pbX + Ax 

.. 
z = -Pbz + A, 

for which the assumed solution is 

y = 1 yiti 
i=0 

1=00 
r = 1 riti 

i=0 

Ax = 1 Ax,iti 
i=0 
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APPENDIX -Continued 

I=00 

A, = 2 A,,iti 
i = O  

The three position coordinates x,y,z along with the radius r, the parameter by 
and the acceleration components Ax,Ay,AZ are assumed to be represented in some 
neighborhood of assumed values by Taylor se r ies  expansions. Taylor se r ies  or power 
ser ies  will be used interchangeably in this appendix which can be justified by Theorem 39, 
page 354 of reference 9. The sufficient conditions for convergence of the particular 
se r ies  a r e  covered, at least for the two body case, by Schanzle (ref. 11) and should be 
easily extendable to the present case of a constant thrust and constant mass-flow-rate 
burn. In fact, the convergence of the ser ies  for the acceleration te rms  of equations (A3a) 
to (A3c) is trivial, being the multiplication of the ser ies  for the sine and cosine of et, 
which is absolutely convergent everywhere, by the ser ies  for  a(t), which is absolutely 
convergent for  t < mo/m. (See ref. 9.) course, t cannot get as large as mo/m 
which corresponds to the spacecraft mass  becoming zero. 

In order  to  obtain the solution to equations (A7a) to (A7c) it is necessary to evaluate 
the coefficients of equations (A8a) to (A8h). The three ser ies  for the acceleration t e rms  
(eqs. (A8f) to  (A8h)) a r e  determined from equations (A6) while the series for x, y, z, 
r, and b a r e  determined by means of recursive equations. The following general for­
mula wil l  aid in this development (ref. 12), 

i = O  

where p and q are the coefficients of the general power series. The recursive equa­
tion for  x can be developed as follows. Differentiating equation (A8a) twice gives 

and then substituting into equation (A7a) along with equations (A8e) and (A8f) yields 
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APPENDIX - Continued 

Changing indices on the first summation gives 

or by use of equation (A9) it may be rewritten as 

Equating the coefficients of the nth power of t gives the recursive equation for  the coef­
ficients of the x series, that is 

The recursive equations for  y and z a re  similar. Therefore, the three recursive 
equations for  the coefficients of the x, y, and z ser ies  a r e  

(A13a) 

(A13b) 

(A13c) 

where xo, yo, zo a r e  the components of its initial position and xl, y1, 21, a r e  the 
components of the initial velocity. 

The recursive equation for r is found by differentiating equation (A2), that is 

rr = xx + yy + zz 

and by substituting equation (A8a) to (A8d) to yield 
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APPENDIX - Continued 

+ 

Multiplying the ser ies  together by equation (A9) and equating the nth power of t gives 

Removing the nth term from the summations produces the recursive equation for the coef­
ficient of the r ser ies ,  that is 

k=n-1 ­2 (k+l)(xk+lxn-k + yk+lyn-k + 'k+lzn-k - 'k+lrn-k] 
k=O 

where 

r1 = 
pox1  + YoYl + " O Z l )  

r0 

The recursive equation for b is found by differentiating equation (A5), which gives 

r b  = -3bk 

In a manner similar to that used to develop the recursive equation for r one obtains the 
recursive equation for b as 

k=n-1 
-bn+l = (n+l)r, 1 (k+l)( 3rk+lbn-k + %+lrn-k) 

k=O 
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APPENDIX - Continued 

where 

1 -3bor 
bo = 3 and b1 - ro

r0 

Through equations (A13), (A14), and (A15), the coefficients of the assumed ser ies  solution 
to the differential equations of motion can be found which lead directly to  the state of the 
spacecraft at t ime t by evaluation of the power series. The only remaining development 
is the ser ies  expression for  the three acceleration terms.  

The power series expansions of the three acceleration functions are most easily 
accomplished by considering the product of two series, the first of which is a(t). Expan­
sion of the magnitude of the acceleration (eq. (A4)) yields 

The second ser ies  are the direction cosines which can be rewritten by USE. of the general 
trigonometry summation formulas as 

EOS( b i t )  cos  Q - s in  (6+6t) sin Q cos = F1 COS et + F2 sin et 

kos (&it) sin a +- sin (6+6t) cos  Q cos 4= F3 cos i t  + F4  sin i t  

k in  (ti+&) sin = F5 cos i t  + ~6 sin dt 

where Fi is a constant and is given by 

F1 = cos Q cos 6 - cos  p sin a sin 6 

Fa = -COS a! sin 6 - cos p sin a! cos 6 

F 3  = sin a, cos  6 + cos p cos  CY sin 6 

F4 = -sin CY sin 6 + cos  p cos  a, cos 6 

F5 = sin /3 sin 6 

Fg = sin p cos  6 

The definitions for  s in  d t  and cos d t  can be given in te rms  of a power series as 
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APPENDIX - Concluded 

. 83t3 65t5 
i=w sin (y)Biti 

sin 8t = et - 3. +51+-=C i! 
i=O 

$ti62t2 84t4 i=w cos (5) 
cos Bt = 1 -7 C2. 	 +41+-*= i!

i=O 

Therefore the three acceleration functions can be written as 

= 

Multiplication of the two ser ies  by the general formula of equation (A9) yields the desired 
power ser ies  expansion for the three acceleration functions as follows: 

i=w k=i F1 sin(?)ek + F2 cos(,> 
&(t) = Thrust 2 { [ k! 

_ _  
kR ik (-l)i-khi-k][ moi-k+l Iti

i=O k=O 

kzi F3 sin(?)& + F4 cos(^) ik (-1)i-kmi-kkR 

Ay(t) = Thrust i=O‘2 k=O [- k! - ] [ T k + 1  Jti 
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TABLE I 


DEFINITION OF INPUT PARAMETERS FOR PROGRAM VITAP 

-


Program Units Definition
symbol 

NOPT None Integer array denoting free control variables and selected target 

KOPT I 6 None 
j 

AIN 6 km, sec, 
or  deg 

km or deg Orbital elements of initial orbit; a, < 0 for hyperbola 

-
GS "1 6 I deg or sec Initial values (guesses) of controls a,P,6,i),tb,vo (see 

sketch 1); these values will vary or remain fixed depending on 
NOPT(1 to 6) 

6 ~ Initial guesses on Lagrange multipliers; if not input, 
GL(l to 6) = 1. 

H P  A"i 6 j deg or sec Increments of controls for numerical partial derivatives; i f  not 
input, H P ( l  to 6) = 0.6, 0.6, 0.6, 0.006, 1, 0.6. 

v1 A CY; 6 deg or sec Maximum allowable step size for controls during Newton-Raphson 
iteration; if not input, V l ( 1  to 6) = 15., 15:, 15., 0.0015, 50., 15. 

NSTEPS 1 None Integer denoting number of segments used for power series 
solution to equations of motion; if not input, NSTEPS = 10. 

MASS ! m0 1 kg Initial mass of spacecraft 



TABLE I - Concluded 

DEFINITION OF INPUT PARAMETERS FOR PROGRAM VITAP 

Program
symbol 

Mathematical 
symbol 

Dimensions Units Definition 

DMASS m 1 kgysec Mass-flow rate 

THR 1 kN Thrust of the spacecraft propulsion system 

PERJD 1 days Julian date of periapsis passage on initial conic 

REFJD 1 days Reference Julian date for constraints of longitude, latitude, and 
true anomaly at a reference time; PERJD and REFJD need not be 
input if these constraints a r e  not used 

PER 1 deg Angular distance from periapsis to landing point (see sketch b) 

SLAT 1 deg Declination of subsolar point in areocentric equatorial coordinate 
system 

SLON 1 deg Right ascension of subsolar point; Input SLAT and SLONG only if 
KOPT(5) = 5 

ERR E 1 None Newton-Raphson convergence criteria (see eq. (12)); if not input, 
ERR = 

MAXIT 1 None Integer denoting maximum number of iterations allowed; if not 
input, MAXIT = 50. 

UMAF?S 1 km3/sec2 Mars gravitational constant; if not input, UMARS = 42828.4 

MODE 1 None Program mode: 
1 - normal forward targeting; 
2 - forward targeting, inclination within bounds; 
3 - backward targeting 

BOUND 2 deg Bounds on inclination for  MODE = 2; BOUND (1) is lower bound 



w 
Q, 

TABLE 11 

TARGET PARAMETER REQUEST KEYS 

Input Input parameter 

KOPT(1) KOPT(2) KOPT(3) 

1 1 a 
I I ! e  I i 

aLatitude at 
I I 

reference date 

1 rp 
I tz sketch 3) 

-, 
I I 

, 

'L 

KOPT(4) KOPT(5) 

I W I S 2  
aLongitude at aLongitude at 
reference date reference date 

"Latitude at aLatitude at 
reference date reference date 

'Latitude of 

1 

KOPT(6) 

I f 
I 

aTrue anomaly at ' 
reference date ', 

I "Longitude at' reference date 

"Value of PERJD and REFJD must be input (see table I). 

b g =  Incoming hyperbolic asymptote (see sketch 3). 

CValue of PER must be input (see table I). 

dValue of PER, SLAT, and SLON must be input (see table I). 




SDAT 

NOPT 

KOPT 

AIN 

CON I 

GS 

GL 

HP 

v1 

NSTEPS 

MASS 

OHA S S 

THR 

PERJD 

REFJD 

PER 

SLAT 

SLON 

ERR 

MAXIT 

UHARS 

MODE 

BOUND 

SEND 

TABLE I11 

SAMPLE OUTPUT FOR NORMAL TARGETING MODE 

[Mode = 13 

= 1, c, 11 0, 1, 1. I r  0 1  1. 11 c t  c. 

= 2, 1 ,  11 1, 11 1 ,  

= 3.4Ee878024932E-C4, O.Ct 0.35Et02, 0.13C3@E+03, 0.0, 0.01 

-0.45?9CS6E+C4, C.l97C4E+Olr 0.3531EtC21 0 . 1 2 9 0 t 9 2 3 3 5 1 l E + 0 3 ~  
0.3C3C718 2204EE+C 3 ,  

= -3.5E+C2, Ce9E+02, 0.2EIO2, 0.01 0.24E+04~ -C.6E+02, 

= 3 .1E+Cl i  C.lE+OI, O.lE+Clr O e l E t O l r  O.lE+Clp C.lE+Olr 

0.6EtC0, 0.6E+OC, 0.6E+OI)v C.6E-03, O.lE+Olt 0.6�+00, 

= 3.15E402, 0.15EtC2, C.I5E+02r C.15E-021 C.5E+02, D.l5E+029 

= 8, 

').?20655E+C4, 

= -0.4ii2E+OCI 

3.1?345E+Cl i  

= I ,  

= J.0, 

= I ,  

= 1, 

= I .  

= 0.1E-C7, 

= 5 5 ,  

= 0.428284E+O5, 

= 1, 

= 0.0. 0.18E+03, 

w 
4 




w 
00 


TABLE III - Continued 

V I K I k G  TARGETING ANALYSIS PROGRAM ( V I T A P I  

*****NORMAL TLAGETII'IG (MOOE=l I*****  

I N I T I A L  CONIC 
SMA -4939.396C ECC 1.57C4000 I N C  35.310000 P E R  129.06923 NO0 303.07185 TAN -60.000000 

THE CONThOL VARIAeLES ARE PLPHA CELTA TECRN TASTART 

THE T A R G E T  VARIABLES ARE l / S P A  I hC PER I 

ITERATICh 1 

CONTRCL PbRdMETERS 
ALPHP B E T A  OELTA THOOT TBURN TASTART 

-5O~CCOCCCCCOO 9c.cccacccooo 2o.cccccococc 0. 2400.000C0000 -60.0000000000 

LAGR ANGE MULT I F L  I E R S  
1.000930cc0c0 0. 1 .ccccccccccc  1.00000000000 C. 0. 

O R B I T  OBTAINED F E O H  PRESENT CChTRCLS 
S M A  48t36.102 ECC .93C9C775 INC 33.327990 PER 139.78924 NOD 307.84094 T A N  37.890110 

T A R G E T  PbRAMElEFS 
l l S N 4  ECC INC PERI NODE TAN 

1.4569591 79706E-05 -53C90774 t  419 33.2279901131 139.789236539 307.840943447 37. E901097288 

OELTA V 1.23!5143 

E R R O R S  I h  TLRGET VPRIABLES 
l / S M A  ECC Ih t  PERI NODE TAN 

3.4?1821CtS614E-05 0. 1.672CCSEE654 -9.409 23653906 0. 0. 

C O R R E C T I C N S  TO CCNTROL VARIABLES 
ALPHP BETA DELTA THDOT TBURh T A S T A R T  

-9.5 12465 7 8 4 3 5  0. 6.1C 64649822 1 0. -17.66C69281C5 - 1 5 ~ 0 0 0 0 0 0 0 0 0 0  

EIGENVALUES OF SECONO PARTIALS OF AUGMENTED FLhCTICk 
7.54145282570+01 2 ~ 0 0 0 0 4 3 7 8 9 0 0 + 0 0  -2.9815233394D+Cl -5.5182930724D+01 



TABLE 111 - Continued 

ITERATlCh 2 

CONTROL PARAHElERS 
ALPna BETA DELTA ThOOT TBURh TASTART 

-59.9124657843 9o.ccoccooo3o 2C. 1064645822 0. 23ez.339?0719 -75.0000000000 

LAGRANCE MULTIPLIERS 
- 5 t 4 4 5 5 . l i 1 2 8 2  0. .7661C8102041 C. 0. 

ORBIT OBTAINED FRCM PRESENT CChTROLS 
SMA 132642.85 ECC -96780569  INC 36.227467 PER 138.67499 NO0 316.23571 TAN 351.64946 

TARGET PIRAMETERS 
l l S Y P  ECC 

7.539C396t3114E-C6 -567805693215  

DELTA V 1.22411160 

ERRDRS I h  T A R G E T  VARIABLES 
1 l S M A  ECC 

4.1348762�3009E-C5 0. 

CORRECTICNS TO CCNTROL VARIABLES 
ALPHb BETA 

2. E572233C499 0. 

EIGEhVALLES OF SECCNO PARTlbLS O f  AUGMENTED 
1 . 2 t ~ 2 2 7 e e i ~ ~ t o 3  i . 9 5 ~ ~ 3 4 i ~ 5 6 0 + 0 2  

I NC PERI NODE TAN 
36.2,2?4665 t 1E 138.674993190 316.2357C5212 351. t 4 9 4 6 1 6 8 7  

I NC PERI NDCE TAN 
-1.22746696148 - 8.29499319019 C. 0. 

DELTA TWOOT TBURh TASTART 
6.77719297418SE-CZ 0. -5o.ooocococoo .14261C85t923 

FUkCTICN 

1 . 9 9 9 $ 7 t 2 0 ~ 6 ~ + ~ 0- i . i344e342570+02 


DELTA THOOT TBURh T A ST ART 
22.53et3932e5 0. 2453 84C 69 840 -63.8506518549 

555sc.9c37335 101.077861597 C. 0. 

ITERATICh 29 

CONTROL PARAMETERS 
ALPHb 

-25.6132438575 

LAGRANCE CULTIFLIERS 
-47E33505'55.7 

ORBIT OBTAINED FFCM 
SMA 20455.OOC 

TARGET PbRbMETERS 
l l S H 4  

BETA 
9c.cocccocooo 

0. 

PRESENT CChTRCLS 
ECC e76436452  INC 35.000000 PER 130.38000 NOD 303.97940 TAN 40.321847 

ECC I NC PERI NODE TAN 
4.0@8780249287E-C5 ,764364521465 35.coooooccco 130~380000000 303.9794C0569 40.3218474563 

DELTA v i . ncc .e39  

ERRORS I h  T A R G E T  VbRlABLES 
1lSMP ECC I NC PERI NODE TAN 

3.267785347E71E-16 0. -2.1284841053196-12 1.909938873723E-11 0. 0. 

CORRECTICNS T O  CChTRCL VbRIAeLES 
ALPHA BETA DELTA TkOOT TBURh TASTART 

3.0126534745 70E-11 0. 6. C 6594938E672E- 11 0. 3.215712718649E-09 -2.175990898215E-10 

EIGENVALLES IJF SECGND PARTIALS OF AUGMENTED FUhCTICN 
w 2.43411942530+07 1.28835964780+07 3.83341E70410+06 1.96485702520+00 
W 



TABLE 111 - Concluded 

NEWTON R E P I - S C h  P A T R I X  

1.267E+C7 0. 5.835E+C5 0 .  -2 .079EtC3 -7 .553Et06 4.504E-06 0. 

0. -Z.E78�-Cl 0. 0. C. 0 .  0. 0.
-5.835E+G5 9. 

0. 3. 


-.?.079E+03 0 .  

-7 .553EtC6 3. 
.~ 

4.504E-Cb 9. 

0. 3 .  

3.9C4E+CO 9. 


-2.94bE+C1 3 .  

0. 0 .  

0. 0. 


I N V E R S E  

4.5390-C9 0. 

0. 0.  

4.4790-C9 0 .  

0. 0 .  


-1.9300-16 0.  

-1.273O-C@ J. 


4.4290tCZ 0.  

0. 3. 

1.0440-Cl 0. 


-1.4730-CZ 0. 

0. 0. 

0. 3.  


TIME FOR T H I S  C P S E  

1.4 1 1E107 0 .  1 9C E E +  C3 - C  e 8  @E+C6 - E .  7 8  @E-06 0. 

0. 


-1.9C5EIC3 

-6.EBBEtC6
-@.7fPE-C6 

0.  

-7.43tE+CO 

-4.256E+01 


0. 

0. 


4.4740-C9 

0 .  

4.42 CO-C9 

0. 


-1.9OCC-16 

-1.256C-CB 


2.5360+C1 

0. 


-8.195C-02 

-5.622C-03 


0. 

0. 


22.740 


.2.878�+05 C. 0.  0. 0. 

C.  

C. 

a. 

0. 

0. 

0. 

0. 

C .  


0. 

0. 

0. 

0. 

0. 

0. 

C.  

0. 

0. 

0. 

0. 

0. 


3.2SCE+CC 4.330�+03 1.020E-07 0. 

4.330�+03 1.428�+07 -1.48bE-06 0. 

1.02CE-C7 -1.486E-Cb 0. 0. 

C. C. 0.  0. 


-4.834E-04 -1 .225�+00 0. 0. 

-5 .?21�-03 -2 .549�+01 0.  0. 

0. 0 .  0. 0. 

C. 0. 0. 0. 


-1.93CO-16 -1.2730-08 4.4290+02 0. 

0. C .  0. 0. 


-1.9CEO-16 - l . i56C-C8 2 5 3 @O+O 1 0. 

C. 	 C. 0.  0. 

e . 2 1 ~ 0 - 2 4  5 . 4 1 3 ~ - 1 6  9.7470+06 0. 

5.4130-16 3.569C-08 -2.5890+03 0. 

9.7470+C6 -2.589CtC3 -1  9 1  60+ 1 4  0. 

0. 0. 0 .  0. 


-1.140OtC1 1.850C-02 -3 2 7 70+08 0. 

-2.  c c c c - 0 2  - 1.2810-02 9.4 1@0+07 0. 

0. 0. 0. 0. 

0. C .  0. 0. 


3.904�+00 -2.946E to1 

0. 0. 


-7.436E+OC -4 .256El01  

0. C. 


-4.834E-04 -5.321E-03 

-1 .225�+00 -2.549�+01 


0. C .  

0. C. 

0. C. 

0. C. 

0. C.  

0. C. 


1.0440-C 1 -1.4730-02 

0. 0 .  


-8.1950-CZ -5.6220-03 

0. 0 .  


-1.14OCtOI -2.0600-02 

1.8 50C- C 2 -1.28 10- C Z  


-3. 2 7 7  O+Ce s. 4 1eo+o7 

0. C. 


-2.195C+C5 1 . 0 1 9 0 t 0 4  

l .C190+C4 -1 .7920t03  
0. 0. 

0. C. 


0. 0. 

0. 0. 

0. 0. 

0. 0. 

0 .  0. 

0 .  0. 

0. 0. 

0 .  0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 


0. 0. 

0 .  0. 

0. 0. 

0. 0. 

0 .  0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 




TABLE IV 

SAMPLE OUTPUT FOR TARGETING WITHIN BOUNDS 


S D A T  

NOPT 

KDPT 

A IN  

CON I 

GS 


GL 

HP 

v1 

NSTEPS 

M A S S  

O H A S S  

T H R  

PERJO 

REFJD 

PER 

SLAT 

SLON 

ERR 

M A X l T  

W A R S  

PODE 

BOUND 

SEND 

[Mode = 4 
= I ,  1, 1, I ,  1, 1. 1, 1, 0. 1, 1, c, 
= 1, 1, 1, 1, 1, 1, 

= 	 0.204 55E+C5 , C. 7 7 t t  2S?723C5E+CC 9 0.C t C. 13C3eE+03 9 0.30327E+03 ,
0.3, 

= -0.4539096E+C4, 0 .15704E+Ol~  C.35?1E+C2r 0.129@69233511E+O3~ 
9.30?07182204@E+03r 

= -0.55E+C2, C.4E+C21 C.SE+Olr 0.25E-Cl. C.24E+C4* -0.6E+02r 

= O . l E t C 1 ,  0.1E+01, O . l E + O l r  C . l E t O 1 ,  @ . l E * C l *  O.lE+Clr 

= 0.6E+CC, C.~E+CCI C . 6 E + C O *  C.6E-C3r O.lE+Olv C.6E+@01 

= 0.15E+02r 0.15E+C21 C.l5E+O2y C.15E-02, C.5E*OZv 0.15E+C21 

= a, 

= O . ? i C 6 $ 5 � + 0 4 ~  

= -0.4772E+OO. 

= 0.13345E+Clr 

= I ,  

= 0.0, 

= I ,  

= I ,  

= I .  

= 0.1E-C7, 

= 50, 

= 0.42�284E+C5, 

= 2, 

= O.?IE+C2, C.35E+O2, 



TABLE IV - Continued 

V I K I k C  T b R G L T I h G  A N A L Y S I S  PROGRAM I V I T A P )  

* * + + * I N C L I f i A T I C h  P E T W E E N  ECUNCS I M C C E = Z l r * * * *  

I N I T I A L  C C A I C  
SMh -4939.096C ECC 1.SiC4CCC I N C  35.?lCCCO PER 129.06923 NCO 303.07182 T A N  -60.003000 

T H E  C C F i T R C l  V A R I A B L E S  ARE A L P H A  � E T A  D E L T A  T h C C T  T E U R N  T A S T A R 1  

T H E  T A R G E T  V A R I b B L E S  ARE SMA ECC P E R I  NCOE 

I T E R A T l C h  1 

C O N T R O L  F b R A Y E l F R S  
A L P H b  

-55.CCOOCCC000 
e E T A  

4c.ccccc00030 
D E L T A

5.ccooccocccc 
T h O O T  

2.5COOCOOOOOOOE-02 
T B U R N  

2400.00CCOCCO 
T A S T  A R T  

-60.00000COO~C 

L A G R A N G F  P U L T I F L I E R S  
1.cccoccccooo 1. ccccccccooo 0. 1.00000000000 1.cccocccocco 0. 


C R B I T  O E T A I N E C  FRCM P R E S E h T  C E L T F O L S  
SMA 19349.912 E C C  .76466673 I N C  34.906452 PER 128.75868 NOD 303.52583 T A N  50.136035 

T A R G E T  P b R A M E T E R S  
S M A  ECC 

19345.91iCC75 .764666731799 

D E L T A  V 1.23!!143 

E R R O R S  I h  T A R G E T  V A R I A B L E S  
S M A  ECC 

1 ic5.0a755253 1.196264056613E-02 

C O R R E C T I C N S  T O  C C h T R O L  V b R I A E L E S  
A L P H A  B E T A  

-1 1.8746E tCS26 -15.CCCOOCCC30 


E I G E k V A L L E S  OF SECCNO P A R T I A L S  OF AUGMENTEO 
2.31E8S477?80+11 8.41282603ClOt04 

I NC P E R I  NODE T A N  
34.e064515029 128.758679590 303.5258 26tt5 50.1360345024 

I N C  P E R I  k C C E  T A N  
0. 1.62132041005 -a255826664554 0. 


C E L T A  TI -OOT T B U R h  T A S 1ART 
11. 01080E779 -3.2593863654CBE-04 -15.2568751492 -2. 38891726 8 

F U k C T I C N  
5.6245901648Ct04 2.02037460520+04 1.76t04104@80403 2.17771354990+00 




TABLE IV - Continued 

ITERATICh 2 

CONTRDL PbRAYElERS 
PLPHb PETA OELTA T H DOT TBURK TASTART 

-66.8746EtCS26 25.CCCCCCCOOO 16.40108ce779 2.467406136346E-02 2384.743124�5 -62.43889 17265 

LAGRAhGE PLLT I  Fl I E R S  
3.11933539515 -10592.155C564 C. 42.1739821634 -S .  18282948849 0. 

G R 8 I T  CeTbINEC FGCC PRESENT CCkTRCLS 
SHA 2C204.416 ECC .77402282 INC 36.239331 PER 131.02962 NO0 202.30496 TAN 43.941272 

TARGET PbRbHETEPS 
S M A  ECC I NC 

20204.4162659 .7 i 4 0 2  28 17646 3 6 .  23933717�6  

OELTA V 1.2256561 

ERRORS I h  T A R G E T  VbRIA8LES 
CMA ECC INC 

25C.5837341Ce 2 6C t 55 4 7 19 1 3  3E -C3 C. 

CORRECTICKS TO CChTRCL VbRIABLES 
CLPHP BETA CELTA 

i 5 . o o o ~ a o c o o o  7.4C525245771 -13.23506C7551 

EICEhVALLES OF SECGNO PbRTlbLS OF 41IGMENTEO FUhCTlCh 
7 .52556629�5D+ l l  

ITERATICh 1 2  

CONTROL PlRANETERS 
PLPHP 

-58 - 3  5952 5 5  367 

LAGRANGE MULTIPLIERS 
94.28154 23607 

?.09:11345520+05 2.1743458528OtC5 

8 ETA DELTA 
34.947603C320 8.89468323491 

517787.364574 0. 

PERI NODE TAh 
131.029617172 302.304960945 43.94127 15869 

PERI NODE TAN 
' - 6 4 9 6  1717 1922 .965039054150 0. 

TI-DOT TBURh TASTART 
-7.521978869204E-04 -10.2106029132 e66916276C881 

9.35847334110+04 7.8486027652C+03 2.61596658610+00 

THDOT T8UP.h TASTPRT 
2.40746244642OE-02 2371.64763119 -61.7465945681 

182.143038384 -3404.673 t 73 1 8  0. 

ORBIT OeTPINEO F P C M  PRESENT CChTROLS 
SMA 20455.00C ECC -77662537  INC 35.281270 PER 130.38000 NO0 303.27000 TAN 44.620900 

TARGET PARAMETER S 
SMA ECC I NC PERI h O O E  TAN 

~ o ~ ~ 5 . o a c o o o o  .7i 6629372365 35.2812702454 1 3 0 ~ 3 8 0 0 0 0 0 3 0  3o3.27oococco 44.6208995264 

DELTA V 1.217i220 

ERRORS I h  l A R G E T  VARIAELES 
S M A  ECC I NC PERI NODE TAN 

-4.6566128i3077E-10 -3.5f2713678801E-15 0. -9.094947017729E-13 C. 0. 

CORRECTICNS TO CCNTRCL VARIABLES 
PLPHb @ETA DELTA THOOT TBURN TASTART 

-7.381398tZ0253E-CS -6.7�50115��7C8E-C9 6.092481265466E-09 7.885268236581E-14 9.678599365052E-12 -1.637995933861E-10 

EIGENVALLES OF SECChD PPRTI lLS  OF AUGMENTED FUhCTICN 
2.50717982�20+13 9.759�6655460+06 6.965C759021Ct06 2.56025473700+06 2.49473610340+05 2.2357747766O+Cl 

* * S t *  I hCL lNAT lCh  NOT Y I T H I h  eCUNOS - BEGIN TPRGETING T C  hEARESl BOUND***** 



SOAT 

NOPT 

KOPT 

A I N  

CCNI  

GS 

GL 

HP 

v1 

NSTEPS 

MASS 

OMA S S 

THR 

PERJO 

REFJO 

PER 

SLAT 

SLON 

ERR 

M A X I  T 

UMARS 

MODE 

BOUND 

SEND 

TABLE IV - Continued 

= 1. 1, 1, 1, 1, 1, I ,  1, 1, 1, 11 C l  

= 1, 1, 1, 1, 1, 1, 

= 	 0.2C455E+C5, O . i l t t 2 5 3 1 2 3 6 5 E + C C ~  0.35E+02r 0.13038E+031 
0.3C?i7E+C?, 0.0. 

0.3531 E+O 2 v 

= -0.5�?59529544041E+02,  0.349476030252C9E+02, 0 .88946832409062E+Ol t  
3.24C14t2446428E-01, 0.2371h476311911E+O4, -C .61746594968311E+02~  

= 	 0.942815424CC895EtC21 C.5177�73C129'9 iE+Cbr C . C v  
O.le214303@51�59E+C3r -0.340467365e750?E+C4, C . O t  

= 0.6EtOOv 0.6E+OOt 0.6E+00, C.6E-03r 0 .1E tO l t  Ce6E+COv 

= 0.1CE+CZI C. 15E+C2, 0.15EtO21 0.15E-021 C.5E+02r 0.15E+CZv 

= 8 ,  

= 3.3iCE95E+C4, 

= -0.4i i2E+OOI 

= 0.1??45E+Cll 

= I ,  

= 0.0. 

= I ,  

= I ,  

= I ,  

= 0.1E-C7, 

= 50. 

= 0.4ie284E+C5, 

= 1, 

= 0.31E+C2,  C.35EtOi. 



TABLE IV - Continued 

V I K I k C  T A R G E T I N G  A N A L Y S I S  PROGRAM ( V I T A P I  

*****NORPAL T L P C E T I N G  t M O O E = l l * * * * *  

I N I T I A L  C C h I C  
SMA -4939.0960 E C C  1.C7C40CC I N C  35.?10000 PER 129.06923 N O 0  303.07182 T A N  -61.746555 

THE C C N T F C L  V b R l A 8 L E S  L R E  A L P P A  e E T A  C E L T A  TI-OCT T B U R N  T A S T A R T  

THE T A R G E T  V A R I A B L E S  A R E  S M A  E CC I NC P E R I  NCOE 

I T E R A T I C h  1 

C O N T R O L  PARAMETERS 
A L P H A  BETA D E L T A  

-58.3595295440 34.9476030252 8. 89468324C91 

L A G R A N C E  M U L T I P L I E R S  
94.2e i5424009 5177E1.361296 C. 

O R B I T  O B T b I N E C  FRCM P R E S E N T  C t h T R O L S  
S M 4  20455.cIOC ECC e77662937 I N C  35.281270 

T A R G E T  P A R A M E T E P S  
SMA ECC I NC 

20 4 5 5. c c ccooo - 7 7 6 6 2 9 3 1 2 3 6 5  3 5 . 2 ~ 1 2 7 0 2 4 5 e  

D E L T A  V 1.2172220 

ERRORS l h  T A R E E T  VARIABLES 
SUA ECC I NC 

3.2 556290 11154E-09 3.9C7985046681E-14 -.281270245 8 3 0  

C O R R E C T I C N S  T O  CCFiTROL V A R I A B L E S  
L L P H P  @ E T A  D E L T A  

4.5?198691813 4.15337C13317 -3.6868813'516 

E I G E N V A L U E S  OF SECCNC P A R T I b L S  O F  AUGMENTED F U N C T I C N  
2.507179825COt13 9 .755�6656340+06 6.9650159127C+C6 

THDOT T B U R N  T A S T  A R T  
2.407462446428E-02 2371.64763119 -61.7465945683 

182.143038919 -3404.61365�75 9. 

PER 130.38000 NOD 303.27000 T A N  44.620900 

P E R 1  NODE T A N  
130.380000000 303.270CCOCCO 44. 6 20 89 9 5 26 1 

P E R I  NOOE T A N  
-2  1 2 8 484105319E-12 1 8185894C3 546E-12 0. 

T P O D T  T B U R  h T A S T A R T  
-3.248484222292E-05 -1.0884115494�4E-C9 8 ~ 1 0 9 1 1 7 2 2 0 1 3 6 E - 0 3  

2.56025474860+06 2.4S47362lCBO+C5 2.235114E672O+Cl 



TABLE IV - Continued 

ITERATICh  Z 

CCNT POL Pb R  PY E T ER 5 
PLPHb BETA DELTA THDOT TBURN TASTART 

-5 3.8 2754 it 259 3S.lCO51315E4 5 . 2 ~  7ec 186575  2.404213962206E-02 2371.64763119 -61.7384858511 

LAGRANGE MLLTIFLIERS 
93 863 9C 5566 0 5 5 e 3 7 2 . 1 1 7 ~ 2 1  240 12.208C 1 7 8  138.0 15147139  - 1 2 9 . 5 6 e 4 ~ 6 4 1 4  0. 

ORBIT CBTAINEC F F C M  PRESENT CChTRCLS 
SMA 20482.251 Eac .77689615 INC 35.035507 PER 130.54974 NOD 303.16178 TAN 44.510231 

TARGET P L R b M E T E F S  
SM4 ECC I NC PERI NODE TAN 

20482.2571@73 -77689615C604  35.0 3 55 07C2 C7 130.549736793 303.161719428 44.5702301306 

OELTA V 1 . 2 l i i Z Z C  

ERRORS I h  TARGET VARIABLES 
SMA ECC INC PERI NODE TAN 

- 2 7 . 2 5 7 1 ~ 1 2 e 4 1  - 2 . t 6 7 7 8 2 3 ~ 6 7 1 6 ~ - 0 4  - 3 . 5 5 0 7 0 2 0 7 3 7 5 0 ~ - ~ 2  -.169736792887 l C 8 2 2 0 5 1 2 2 0 5  0. 

CDRRECTICNS TC CChTRCL VbRIPELES 

-. LLPHb BETA OELTA THDOT TBURN TASTART 
4 358 7827C093 6.474164113686E-02 - 3 6 2 3 8 3 4 9 7 1 4 9  7.086660695794E-05 .692450922945 4.973123280717E-03 

EIGENVALLES OF SECCND PARTIALS OF AUGMENTED FUNCTICN 
2.51L13785350+13 5.68C72046460+06 7.215C1541430+C6 2.337525C3090+06 3.6444220712C+05 2.22191394160+01 

ITERATIOh 6 

CONTROL PPR AH� 1E R S  
ACPHb BETA DELTA TI- DOT TBURh TASTART 

-54.2615624406 39.1678744022 5.5696 535 1 C C  1 2.4112340817C3E-02 2372.370E4545 -61.7341841275 

LAGRPNGE MLLTIPLIERS 
93.8681130452 552C67.961589 24375. 5C9CCC5 20.4146420811 -24.70C8177262 0. 

ORBIT OBTPINEO FPCM PRESENT CChTROLS 
SMA 20455.00C ECC - 7 7 6 6 2 5 3 7  INC 35.COOOOO PER 130.38000 NOD 303.2700C TAN 44.674292 

TARGET PbRPHETERS 
SPA ECC I NC PER1 NODE TAN 

20455.0ccc000 .176629372365  35.C00C000000 130.3800OOOOO 3c3.27oocooco 44.6742915574 

OELTA V 1.21iCE72 

ERRORS I h  TARGET VbRIAeLES 
SMA ECC I NC PERI NODE TAN 

1.979C60411058E-09 1.7763568394DOE-14 9.094941Cl7729E-13 -9.094947017729E-13 0. 0. 

CORRECTICNS T O  CCNTRCL VbRIdBLES 
ALPPP BETA DELTA TNOOT TBURN TASTART 

-4.876C283C2904E-12 -1.005350177936E-11 2.4659181641t4E-11 -3.e74074630498E-15 -4e588838924B58E-11 -1.1345239.23412E-11 

EIGENVALUES DF,SECONO PARTIALS OF AUGMENTED FUNClICN 
2.5c52e68i270+13 9.66244493780+06 7 . 2 8 3 2 7 6 6 8 1 4 0 + ~ 6  2.34675544790+06 3 . 2 8 e 9 5 0 ~ 3 7 i o + c 5  2 . 2 i i o 5 6 9 2 ~ 9 o + c i  



TABLE TV - Concluded 

hEWTCN RlPHSCh ! I I T P I X  
1.083E+C7 -3.1?7E+Ct 

-3.137F+O6 4.388E+06 
l .J14E+C7 -4.7C9E+C4 
l . t91E+10 -4.223E+07 
6.567E+02 -7.4t7�+02 

-7.1)90E+C6 -8mIClE+04 
-6e753E+C2 l.C?6E+03 
-1.437E-CZ l . iL2E-02 

2.935E+00 -6.�8OE+00 
-2.378E+Cl -6.Cf9E+00 
- l .J96E+Cl  l.C66E+01 

0. 'J. 

INVERSE 
2.6810-C9 
1.2860-C9 6.1720-10 
2.9240-09 1.4C3D-09 
1.3040-12 6.258C-13 

-2.16 50- 17 -1 C?90-17 
-8.439C-09 -4eC49C-09 

1 2660-09 

6.6690-C5 5.?620-05 
-6.139D+CO -4.fE7D+OC 
-2.2930-C1 -2.6480-01 

2.4390-C3 3.6COD-03 

1.014E+C7 1.291E+10 6.567E+02 -7.C90�+06 -6.753E+02 -1.437E-CZ 2.935E+OC -2*378E+01  -1.09tE+C1 0. 
-4.7CSE+C4 -4.223E+C7 -7.467E+02 -8 *3C lE+04  1.636E+03 1.752E-02 -6.680E+OC -6.889�+00 1.066E+01 0. 

1.303E+C7 1.661�+10 ?.44@E+C2 -9.i57E+C6 1.933E+02 -6.C76E-C3 -5.7ClE-C1 -4.167E+01 1.72CE+00 0. 
1.661E+10 2.5C9E+13 2.416E+C5 -1.194E+10 1.731E+05 1.927�+01 -1.058E+C3 -5.240E+04 1.58 1E+03 0. 
3.448E+02 

-9.257E+C6 
2.416E+C5 2.3C5E+Cl 2.i66E+C3 

-1.194E+10 2.266E+03 1.469�+07 
-4.742E+01 

1.286E+02 
-5.C61E-04 
-1.022E-133 

-5.529f-C4 
-4.468E-Cl 

-1.731E-02 
-3.115�+01 

8 - 3 4  1E-05-1.0 16E+CO 
0. 
0. 

1.933EIC2 1.7?1E+C5 -4.742E+C1 1.286E+CZ 0. 0. 0. 0. 0. 0. 
-6.C76E-C3 1.927E+C1 -5.C61E-04 -1.022E-03 0. 0. 0. C. 0. 0. 
-5.701E-Cl -l.C58E+03 -5.52SE-C4 -4.468E-01 0. 0. 0. 0. 0. 0. 
-4.167�+01 -5.24OE+C4 -1e731E-02 -3.115E+C1 0. 0. 0. C. 0. 0. 

1.720E+C0 1.5@lE+C3 8.341F-C5 -1.016�+00 0. 0. 0. C. 0. 0. 
0. C. C. C. 0. 0. 0. C. 0. 0. 

2.9240-09 1.3040-12 -2.1650-17 -8.4390-09 6.6690-05 -6.1390+00 -2.293C-01 2.4390-03 -1.4210-01 0. 
1.4030-G9 6.2580-13 -1.0390-17 -4.C490-09 5.3620-05 -4.887D+OC -2.C48O-Cl 3.6000-03 -6.9890-02 0. 
3.188C-C9 1.4220-12 -2.3610-17 -9.2020-09 4.4080-04 -4.1200+01 1.859O-Cl -$.6C5D-03 l . lC6D-01 0. 
1.4220-12 6.3450-16 -1.05?0-20 -4.1050-12 -3.7970-07 3.575D-CZ -6.651C-C6 -5.2850-06 -7.972C-06 0. 

-2.3610-17 -1.0530-20 1.74SO-25 6.815C-17 -1.9760-02 -1.1640+02 -5.137C+OC -4.3030-03 5.2C60-03 0. 
-9.202C-C9 -4.1050-12 t e e 1 5 0 - 1 7  2.656D-CB -2.8470-06 8.171O-Cl -1.051C-C? -1.3020-02 -1.0650-02 0. 

4.4080-04 -3 .797047  -1.F780-02 -2.8470-C6 -5.7780-01 5.3610+04 3.8490+0C -7.5890+00 -5.352D+Ob 0. 
-4.1200+C1 3.5150-CZ - l . l t 4 0 + 0 2  8.171C-01 5.3610+04 -5.0610+09 -3.234C+C5 7.C310+05 5.C520+@5 0. 

1.859C-01 -6.6510-C6 -5.1370+00 -1.C51C-03 3.8490+00 -3.2340+05 -8.542C+04 9.3980+02 -1.1050+04 0. 
-9.605C-C3 -5.2850-06 -4.3030-03 -1.302C-02 -7.5890+00 7.0310+C5 9.3980*Ci -1.8410+03 -1.5210+03 0. 

-5.3520+00 5.0520+C5 -1.105C+04 -1.5210+03 -2.0580+C4 0. 
0. 0. 0. C. 0. 0. 

-1.42 10- 0 1  -6. S 890-0 2 1.10tD-01 -7.572D-C6 5.2CtD-C3 -1.C650-CZ 
0. 0. 0. 0. C. 0. 

T I M E  FOP TPIS CbSE 29.532 



ZOA T 

NOPT 

KOPT 

A I N  

CONI 

GS 

GL 


HP 

NSTEPS 

C A S S  

D M A S S  

THR 

PERJD 

REF JO 

PER 

SLAT 

SLON 

ERR 

MAXIT 

UMARS 

MODE 


BOUND 

SEND 

TABLE V 

SAMPLE OUTPUT FOR BACKWARD TARGETING MODE 

[Mode = 3 

= 1 .  I ,  I ,  1, 1, 1 ,  I ,  0 .  0 .  1 ,  1, 0, 

= 5, 4 ,  3, 4, 4 ,  I ,  

= o . z 5 4 4 7 � + C l r  0.0, 0.0, - 0 . 4 ~ 4 ~ t o 1 ,  O . I ~ C C ~ E + C ~ ,  0.0~ 

= 	 0.2C455E+C5,  C . i i t t Z S ? 7 2 3 6 5 E * C C 1  0 . 3 5 � + 0 2 ~  C.13038�+03,  
0 . 3 C ? 2 7 � + 0 3 1  

= - 0 * 5 5 F + C 2 ,  0 . 4 � + 0 2 ,  0.5E+01, 0.ZfE-01~ C e 2 4 E t 0 4 r  0.45EtO2, 

= 9 . 1 E t C l e  O.IE+Ol ,  O . l E + O l t  C . l E + O l ,  O . l E + C l ,  C*lE+O1* 

= 0.6E+CC, 0.6E+OC, 0.6E+00t C.6E-03, O . l E + O l t  0.6E+ODt 

= 0.15E+02,  0.15E+02, O . l S � + O i ,  0.15E-02. C .5�+02 ,  0.15E+02r 

= 8,  

= 0 . 3 i C 6 5 5 E t C 4 1  

= -C.4i72E+CC1 

= 0 . 1 ? 3 4 5 E + C 1 ~  

= I ,  

= '3.0, 


= I ,  


= I ,  


= I ,  


= 0. I � - 0 7 1  


= 51). 

= 0 . 4 2 8 2 8 4 E + 0 5 ,  

= 3 ,  

= 0.0, 0.18E+03,  

V I  



TABLE V - Continued 

V I K I N G  T A R G E T I A G  A N A L Y S I S  PROGRAM I V I T A P )  

*****BACKWARD 1 4 R G E T I N G  lHOOE=?I+**** 

I N I T I A L  C C h I C  
SMA 2 0 4 5 5 . 0 1 1 ~  ECC . l i t 6 2 9 3 7  IhC 35.CCCCOO P E R  1 3 0 . 3 8 0 0 0  NCO 3 0 3 . 2 7 0 0 0  TAN 45.0COOOO 

THE C C N T F C L  V L R I A B L E S  A R E  b L P t r A  P E T A  D E L T A  TI-OCT T e l i R N  T A S T A R T  

THE T A R G E T  V A R I A B L E S  ARE V I N F  OECSV R T b S V  

I T E R A T I C h  1 

C O N T R C L  F A R A M E I E R S  
A L P H L  B E T A  D E L T A  T I i O O T  TBURk T A S T A R T  

-55.ocoooccooo 4o .cccocooooo 5 . c c c c c c a c o c c  2~5COCOOOOOOOOE-02 2 4 0 0 ~ 0 0 C C 0 0 0 0  4 5 . 0 0 0 0 0 0 0 0 0 0  

L A G R A N G E  M b L T I P L I E R S  
1 .cocooaccooo 0 .  0 .  1.coocooooooo 1.OOOOCOOOCCO 0. 

O R B I T  O B T A I N E D  FRCM P R E S E N T  C C h T R O L S  
SUA - 4 8 5 4 . 6 8 4 7  ECC 1 . 9 9 0 7 4 0 7  I N C  3 5 . 4 4 1 3 6 4  PER 1 2 9 . 3 6 5 0 5  NO0 3 0 2 . 8 2 8 9 4  TbN 2 9 7 . 8 6 8 2 9  

T A R G E T  P A R A N E T E R S  
V f N F  B*R B * T  OECSV RTAS V T A N  

Z.S7C198(7011  -48C4 .0C183178  6 8 3 1 . 7 3 2 5 7 0 5 3  3 5 4 . 6 1 4 0 8 9 3 4 9  1 3 0 . 3 5 5 0 2 4 4 9 0  2 9 7 . 0 6 8 2 9 1 3 5 4  

D E L T A  V 1 . 2 3 2 2 1 4 3  

ERRORS I h  T A R G E T  V b R I A e L E S  
VINF B*R 

- 2 . 5 4 9 8 0 7 0 1 C t 2 4 E - 0 2  0. 
B * T  

0. 
OECSV RTdSk 

. 3 8 5 9 1 0 6 5 1 4 6 1  -.2 7 5 0 2 4 4 9 0 1 2 9  
T A N  

0. 

C O R R E C T I C N S  TO CCNTROL V A R I A B L E S  
A L P H A  @ E T A  

. 4E2710CCi179  . 4 5 7 2 6 0 6 5 7 0 1 0  
D E L T A  

- 2 . C 3 3 7 3 7 1 4 5 5 0  
T k O O T  TBURh 

1 ~ 5 0 0 0 0 0 0 0 0 0 0 0 E - 0 3  - 4 . 4 0 2 5 6 2 9 0 ? 1 3  
T A S T A R T-.1 5 5 1 5 7 4 5 9 11 7  

F I N A L  P A S S  2061.t7COOC 

E I G E N V A L L E S  OF SECCNO P A R T I A L S  OF BUGHENTEO FUNCT I C h  
8 . 3 3 2 4 1 4 6 5 4  10+0 I ~ . 4 0 e 3 5 i 3 4 5 1 0 + 0 0  1 . 9 9 S q 7 4 1 8 1 6 0 + 0 0  - 3 . 7 2 3 6 3 2 3 4 0 0 0 + 0 0  - 6 . 1 3 4 7 6 9 8 0 1 6 0 + 0 0  - 6 . 2 7 9  1 7 7 6 6 2 5 0 t 0 6  



wl 
0 


ITERAT lCh  2 

CGNTRCL PARAME l E R S  
ALPHP BETA 

-54.5172055970 4C .45726C6570 

LAGRANEE MLLT I FL I E R S  
2 . 3 0 5 8 6 i c i e 3 3  0. 

ORBIT DBTAINEO F R C C  PRESEhT CChTRCLS 
S M A  -4061.5682 ECC i .qe58033 

TARGET PPRAMETEFS 
VINF B*R 

2. S680945 t640  -4756.9056 1222 

OELTA V 1 . 2 5 i t 6 5 8  

ERRORS I h  1 A R C E T  VARIABLES 
VIYF R*R 

-2.339456647724E-C2 0. 

CORRECTICtvS T O  CChTRCL VARIABLES 
ALPHA BETA 

- 5 7 2 2 5 9 7 2 4 4 3 7  - 5 4 5 7 0 t 5 7 4 8 5 5  

F INAL  M A S S  2Ct3.771C94 

TABLE V 

OELTA 
6 . t tS7?  1eE272 

C. 


INC 35.456375 

e'*T 
6023.25774489 

B*T 
0. 

OELTA 
-2.05866C91386 

- Continued 

TI-DOT TRURK TASTART 
2.3500CCCOOOOOE-02 2395.597C3710 45.155 1 5 7 4 5 9 1  

.979964684660 .990405855121  0. 

PER 1?9.41727 NO0 302.83375 TAN 297.86303 

OECSV RTASk TAN 
354.6e97095C2 1?0.333??1173 297.863830483 

OECSV RTASk TAN 
-370290490136  -e253331172693  0. 

THOOT TBURC TASTART 
1~500GCOOOOOOOE-03 -3.16638921221 -.11668e7809C 8 

-4.74416468630+00 -7.79154682C00tOO -1.C1267757C6OtC7 

THOOT TBURN TASTART 
1.901992734839E-02 2 3 6 7 . 9 6 6 e 8 e t l  44.5623489078 

9783.80393437 0095.53598726 0. 

PER 129.3C790 NO0 303.00276 TAN 291.70925 

DECSV RTASL TAN 
355.060000003 130.079959996 297.709246057 

DECSV RTASV TAN 
-3.044988261536E-09 4.349203663E78E-09 0. 

THDOT TBURh TAST ART 

EIGENVALLES OF SECChO PARTIALS OF AUGMENTED FUNCTICti 

ITERATICh 4 6  

CONTRCL PAR4MElEPS 
ALPHP BETA 

-50.5753e64909 34.5884 174529  

LAGRPNEE WLLTIFLIERS 
-7460113.  I 2 2 9 3  0. 

ORBIT OBlAINEO FRCM PRESENT CChTPOLS 
SHA -4939.1218 ECC 1.5556038 

TARGET PPRAHETERS 
V[NF B*R 

2.54469955556 -4 74  3.850 265  1 8  

OELTA V 1 .214E5 t l  

ERRORS I h  T A R G E T  VARIABLES 
VINF B*R 

4.429C97C84CB7E-lC 0. 

CORRECTICkS T O  CCNTRCL VARIABLES 
PLPHI BETA 

1.E233947392CtCO 

OELTA 
16.291160524t  

C. 

INC 35.C5CB06 

B*T 
0. 

OELTA 
1.4i734805F775E-C9 1.153097084863E-C9 3.4CC362694156E-C9 1.168156685974E-12 6.957999209SE5E-07-9.931706836794E-09 

FINAL M A S S  2C76.556201 

EIGENVALUES OF SECOND PARTIALS OF AUGMENTED FUNCTION 
1.9SE43231!2D+13 1.04090174880+07 5.81977255820+C6 1.92532658810+06 2.36430115280t05 3.78819023920+00 



T 
tl)

5 

4 

cp 

I& TABLE V - Concluded0 


A E W T C N  ACPHSOk C b T R I X  
9.642E+06 -3.036�+06 9.004E+C6 S.753E+C9 -5.326E+01 5.462F+Ob 1.349E-02 


-3.03tE+C6 5.i t4E+Clt -3.51CE+04 -3.490E+C7 -1.239E+C1 1.S89EtC4 -1.111E-!l2 

9.004E+C6 -3.510F+04 l.C91E+C7 l . l e 3 E l l C  -7.76@E+C1 t.C48E+C6 5.376E-03 

9.753E+C9 -3.490E+07 1.183E+10 1.998E+13 -6.205E+C5 6.$70E+09 5.571E+00 


-5.326E+Cl -1 .2?9E+Cl  -7.76EE+C1 -6.205E+C5 3.918Et00 4.6CBE+C2 6.352E-04 

5.462E+C6 1.5?9�+04 6.648E+06 6.970E+C9 4.6CEE+CZ t m 7 6 0 E + 0 6  -2.079E-03 

1.340E-CZ -1.111E-C2 5.376E-C3 5.571E+CO 6.352E-C4 -2.C79E-03 'I. 

3.  I .  0. C. C. C. 0. 

9. 9. 0. 0. 0. C. 0. 


-5.643�+00 	 -5.2SCE+CO -1.201EtC1 -1.218E+C4 -1.4ECE-03 4.617Et00 0. 

1.745E+01 -3.456Et00 1.772Et01 l.@C6E+C4 l . S t  1E-C3 -6.E22E+CO 0. 

0. '3. 0. 0. C. 0. 0. 


INVERSE 

1.268D-Cb l .Ci30-Cb -1.0440-06 -1.521D-12 -4.9210-15 2.C7OC-09 4.1340-02 

i .o23o-c6 8 . z t ~ o - t 7  -8 .44 ic-c7 3.6e50-14 - ~ . s z c D - ~ ~1 . 5 5 5 ~ - 0 9  3.5460-03 


-1.0440-Cb -8.441O-C7 1.01EO-06 -1.4200-10 -2.951C-16 ?.1930-08 -3.125D-01 

-1 .521~-12  3 . ~ ~ 5 c - 1 4  - 1 . 4 2 0 ~ - i o  1.3890-13 5.4170-18 -4 .958~-12  1.3030-04 

-4.9210-15 -3.526C-15 -2.951C-16 5.4170-18 3.681D-22 3.CC60-15 1.575D+O3 


2.07CO-C9 1.5550-09 3.193C-CB -4.9580-12 3.OCCO-15 7.43OC-08 9.0200-02 

4.1340-C2 3.5460-03 -3.1250-C1 1.3330-C4 1.575D+C3 S.02OC-02 -S.8820+06 

0. 3. 0. 0. C. C. 0. 

0. 	 0. C .  0. C. 0. 0. 

2.1520-01 3.515C-02 -1.8@5C-01 1.653D-06 -2.OC6O+OC 2.C860-02 -2.8720+04 

1.4COD-Cl 2.4tQD-02 -8.681C-GZ -1.529O-C6 -1.87E0+00 -3. l l6C-C2 4.107C+04 

0. 0. 0. 0. 0. C. 0. 


T I M E  FCR T b I S  C A S E  77.756 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 


0. C. 

0. 0. 

C. C. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 

C. C. 

0. 0. 

0. 0. 

0. 0. 

0. 0. 


-5.643E +00 1.745E+01 
-5.290E +00 -3 4 5 6E + C 0 
- 1.20 1E t 0  1 1 . 7 7 i E t 0 1  

-1.218�+04 1.8C6E+C4 

-1.483E-03 1.5t 1E-03 


4.61 7E+00 -6.822�+00 

t. 0. 

c. 0. 

C. 0. 

c. 0. 

C. 0. 

C. 0. 


2.052D-Cl 1.4000-01 

3.5150-02 2.4600-02 


-1.8850-01 -8.681C-02
-1 5 2 9C-C61. t 5 30-C 6 

-2.0660+00 -1.878C+OO 


2.0860-02 -3.1 160-02 

-2.8720104 4.1070+C4 


C. 0. 

C. 0. 


-5.7570+04 -3.6060+04 

-?.6C6D+04 -2.S400+C4 


C. 0. 


0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 


0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 




AERONAUTICS IONNATIONAL AND SPACEADMINISTRAT 
WASHINGTON,D. C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 
PENALTY FOR PRIVATE U S E  $300 

POSTAGE AND FEES PAID 
NATIONAL AERONAUTICS AI 

SPACE ADMINISTRATION 

01U 001 55 51 30s 71166 00903 

A I R  F O R C E  WEAPONS L A B O R A T O R Y  / W L O L /  
K I R T L A N O  A F B 1  NEW M E X I C O  87117 

" T h e  aerottaulical and space activities of the United States shall be  
condzicted so as t o  contribute , . . t o  t he  expansioiz of human  knowl­
edge of phenoniena iiz the  atmosphere and space. The Administration 
shall provide for  the  widest practicable and appropriate dissemination 
of information concerning i t s  activities and the results thereof." 

-NATIONALAERONAUTICSAND SPACE ACT OF 1958 
','..... . ~ 

1.1... 

NASA .,SCkENTIFIC AND TECHNICAL PUBLICATIONS 
.. . 

TECHNICAL REPORTS: Scientific and 
technical infotpation considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in :Cope biie.,oeverthelessof importance as a 
contribution-to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica­
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reportsand 
Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE 


NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546 


